Hybrid Heterogeneous Transfer Learning through Deep Learning

نویسندگان

  • Joey Tianyi Zhou
  • Sinno Jialin Pan
  • Ivor W. Tsang
  • Yan Yan
چکیده

Most previous heterogeneous transfer learning methods learn a cross-domain feature mapping between heterogeneous feature spaces based on a few cross-domain instance-correspondences, and these corresponding instances are assumed to be representative in the source and target domains respectively. However, in many realworld scenarios, this assumption may not hold. As a result, the constructed feature mapping may not be precise due to the bias issue of the correspondences in the target or (and) source domain(s). In this case, a classifier trained on the labeled transformed-sourcedomain data may not be useful for the target domain. In this paper, we present a new transfer learning framework called Hybrid Heterogeneous Transfer Learning (HHTL), which allows the corresponding instances across domains to be biased in either the source or target domain. Specifically, we propose a deep learning approach to learn a feature mapping between crossdomain heterogeneous features as well as a better feature representation for mapped data to reduce the bias issue caused by the cross-domain correspondences. Extensive experiments on several multilingual sentiment classification tasks verify the effectiveness of our proposed approach compared with some baseline methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

Hierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents

This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...

متن کامل

Collaborative Deep Reinforcement Learning

Besides independent learning, human learning process is highly improved by summarizing what has been learned, communicating it with peers, and subsequently fusing knowledge from di‚erent sources to assist the current learning goal. Œis collaborative learning procedure ensures that the knowledge is shared, continuously re€ned, and concluded from di‚erent perspectives to construct a more profound...

متن کامل

Optimal mathematical operation of a hybrid microgrid in islanded mode for improving energy efficiency using deep learning and demand side management

Deep learning method is used to predict the future value of load demand. Based on obtained results, a new model based on the forward-backward load shifting and unnecessary load shedding is presented. As well, to increase energy efficiency, excess renewable energy has been used to produce green hydrogen. For this purpose, GAMS optimization software has been used for optimal operation of the micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014